Big Bend Community College

Intermediate Algebra

MPC 099

Lab Notebook

(c) ${ }^{\circ}$

Intermediate Algebra Lab Notebook by Tyler Wallace is licensed under a Creative Commons Attribution 3.0 Unported License. Permissions beyond the scope of this license may be available at http://wallace.ccfaculty.org/book/book.html.

Table of Contents

Module A: Compound Inequalities and Systems of Equations 3

Module B: Radicals

Module C: Quadratics............................... 51

Module D: Rational Equations 80

Module E: Functions................................. 95

MPC 099 Module A:
Compound Inequalities and Systems of Equations

Compound Inequalities - AND

Compound Inequalities - Tripartite

Tripartite Inequalities:	
Be sure when solving to balance on	
Example A $\quad-5 \leq 2 x-17<9$	

Absolute Value Inequalities - Simple

Absolute Value Inequalities - Solving

To solve we first set up a $\quad\|3 x-5\|>8$	Example B
Example A	

Absolute Value Inequalities - Isolate Absolute

Systems of Equations - Introduction to Substitution

Systems of Equations - Substitute Expression

Just as we can replace a variable with a number, we can also replace it with an	
Whenever we substitute it is important to remember	
Example A	
$\qquad$$y=5 x-3$ $-x-5 y=-11$	$2 x-6 y=-24$ $x=5 y-22$
Practice A B	

If the variables subtract out to zero then it means either	
there is	$x+4 y=-7$ $21+3 x=-12 y$
Example A	

Systems of Equations - Multiplying Two Equations

Systems of Equations - Special Cases with Addition

If the variables subtract out to zero then it means either	
Example A is	
$\qquad$$2 x-4 y=16$ $3 x-6 y=20$	Example B

Systems of 3 Variables - Simple

To eliminate a variable, we may have to \quad ___ one or
Example A
$\qquad$$2 x-2 y-z=8$ $6 x-3 y-3 z=27$ $-3 x-5 y-z=-15$

Practice A

Value Table:	
The equation always comes from the	
Example A	

Interest Table:	
The equation always comes from the	
Example A	Example B Sophia invested $\$ 1900$ in one account and $\$ 1500$ in another account that paid 3% higher interest rate. After one year she had earned $\$ 113$ in interest. At what rates did she invest? another which paid 4% lower interest. At the end of a year he had earned \$345 in interest. At what rates did he invest?

With two variables the equations will come from the ___ and columns.	
Example A Scott has \$2.15 in his pocket made up of eleven quarters and dimes. How many of each coin does he have?	Example B If 105 people attended a concert and tickets for adults cost $\$ 2.50$ while tickets for children cost $\$ 1.75$ and total receipts for the concert were \$228, how many children and how many adults went to the concert?
Practice A	Practice B

With two variables the equations will come from the	
Example A	$\begin{array}{l}\text { Example B } \\ \text { A woman invests } \$ 4600 \text { in two different accounts. } \\ \text { The first paid } 13 \% \text {, the second paid } 12 \% \text { interest. } \\ \text { At the end of the first year she had earned } \$ 586 \text { in } \\ \text { interest. How much was in each account? }\end{array}$

companies. The first loan had a 4\% interest rate;

the second had a 13 \% interest rate. At the end of

the first year the loan had accrued \$421 in

interest. How much was loaned at each rate?\end{array}\right\}\)

With two variables the equations will come from the ___ and ___ columns.	
Example A A chemist needs to create 100 mL of a 38% acid solution. On hand she has a 20% acid solution and a 50% acid solution. How many mL of each should she use?	Example B A coffee distributor needs to mix a coffee blend that normally sells for $\$ 8.90$ per pound with another coffee blend that normally sells for \$11.30 per pound. If the distributor wishes to create 70 pounds of coffee that can sell for \$11.16 per pound, how many pounds of each kind of coffee should the mix?
Practice A	Practice B

The percentage of acid (or other chemical) in pure acid is The percentage of acid (or other chemical) in water is You need 1425 mL of 10% alcohol solution. On hand you have a 5\% alcohol mixture and pure alcohol. How much of each should you use?	You need a 60\% methane solution. On hand you have 180 mL of an 85% methane solution. How much water will you need to add to obtain the desired solution?

MPC 099 Module B: Radicals

| Prime Factorization: | |
| :--- | :--- | :--- |
| A few prime numbers: | |
| Example A prime factorization we | |
| 1350 | Example B |

Simplify Radicals - Not Perfect Radicals

Simplify Radicals - With Coefficients

If there is a coefficient on the radical: \quad Example B	
	$-8 \sqrt{600}$

Simplify Radicals - Variables

Simplify: $2 x-5 y+3 x+2 y$	
When adding and subtracting radicals we can $2 \sqrt{3}-5 \sqrt{7}+3 \sqrt{3}+2 \sqrt{7}$	
Example A	
$\qquad-4 \sqrt{6}+2 \sqrt{11}+\sqrt{11}-5 \sqrt{6}$	$\sqrt[3]{5}+3 \sqrt{5}-8 \sqrt[3]{5}+2 \sqrt{5}$

Before adding radicals together		
$4 \sqrt{50 x}+5 \sqrt{27}-3 \sqrt{2 x}-2 \sqrt{108}$	$\sqrt[3]{81 x^{3} y}-3 y \sqrt[3]{32 x^{2}}+x \sqrt[3]{24 y}-\sqrt[3]{500 x^{2} y^{3}}$	
Example A		
Practice A		

Product Rule: $a \sqrt[n]{b} \cdot c \sqrt[n]{d}=$	
Always be sure your final answer is	
$4 \sqrt{6} \cdot 2 \sqrt{15}$	$-3 \sqrt[4]{8} \cdot 7 \sqrt[4]{10}$

Add/Subtract/Multiply - Distributing with Radicals

Recall: $a(b+c)=$	
Always be sure your final answer is	
Example A	

Add/Subtract/Multiply - Conjugates

Rationalize Denominators - Quotient Rule

What doesn't work: $\frac{1}{2+\sqrt{3}}$			
Recall: $(2+\sqrt{3})(\quad)$			
Multiply by the ___			
Example A$\frac{6}{5-\sqrt{3}}$		Example B	
			$\frac{3-5 \sqrt{2}}{4+2 \sqrt{2}}$

If we divide the exponent by the index, then $\sqrt[n]{a^{m}}=$	
The index is the \quad Write as an exponent: $\sqrt[7]{m^{5}}$	Example B
Example A	

To evaluate a rational exponent	Example B
Example A	

Rational Exponents - Simplify

Mixed Index - Multiply

Mixed Index - Divide

MPC 099 Module C: Quadratics

Complex Numbers - Square Roots of Negatives

Complex Numbers - Add/Subtract

Complex Numbers - Multiply	
i works just like \qquad Remember $i^{2}=$	
Example A $(-3 i)(6 i)$	Example B $2 i(5-2 i)$
Example C $(4-3 i)(2-5 i)$	Example D $(3+2 i)^{2}$
Practice A	Practice B
Practice C	Practice D

Complex Numbers - Rationalize Binomials

Equations with Radicals - Isolate Radical

| Before we can clear a radical it must first be | |
| :--- | :--- | :--- |
| Example A | |
| $\qquad 4+2 \sqrt{2 x-1}=2 x$ | |

| Practice A Practice B |
| :--- | :--- | :--- |

The opposite of taking an exponent is to do a	
If $x^{3}=8$, then $x=$	
Example A	

Consider: $\left(5^{2}\right)=\quad$ and $(-5)^{2}=$	
When we clear an even root we have	
Example A $\quad(5 x-1)^{2}=49$	

Equations with Exponents - Isolate Exponent

To multiply to one: $\frac{a}{b} *(-)=1$	
We clear a rational exponent by using a	
Recall: $a^{m / n}=$	
Recall: Check answer if $\quad(3 x-6)^{2 / 3}=64$	$(5 x+1)^{5 / 4}=32$
Example A \quad Example B	

$a^{2}+2 a b+b^{2}$ is easily factored to	
To make $x^{2}+b x+c$ a perfect square, $c=$	
Example A Find c and factor the perfect square $x^{2}+10 x+c$	Example B Find c and factor the perfect square $x^{2}-7 x+c$
Example C Find c and factor the perfect square $x^{2}-\frac{3}{7} x+c$	Example D Find c and factor the perfect square $x^{2}+\frac{6}{5} x+c$
Practice A	Practice B
Practice C	Practice D

If we can't simplify the \ldots Example B whe wan.	
Example A $2 x^{2}-8 x-3=0$	$5 x^{2}-3 x+2=0$

Quadratic Formula - Finding the Formula

Solve by completing the square:

$$
a x^{2}+b x+c=0
$$

Quadratic Formula - Using the Formula

If $a x^{2}+b x+c=0$ then $x=$	
Example A	Example B

Before using the quadratic formula, the equation must equal	
Example A	
$2 x^{2}=15-7 x$	$3 x^{2}+5 x+2=7$

Quadratic Formula $-b=0$

If a term is missing, we use_____ in the quadratic formula.	
Example A	

Area of a rectangle:	
To help visualize the rectangle,	
Example A The length of a rectangle is 2 ft longer than the width. The area of the rectangle is $48 \mathrm{ft}^{2}$. What are the dimensions of the rectangle?	The area of a rectangle is $72 \mathrm{~cm}^{2}$. If the length is 6 cm more than the width, what are the dimensions of the rectangle?

Rectangles - Perimeter

Perimeter of a Rectangle:	
Tip: Solve the _equation for a variable.	
The area of a rectangle is $54 \mathrm{~m}^{2}$. If the perimeter is 30 meters, what are the dimensions of the rectangle?	Example B The perimeter of a rectangle is 22 inches. If the area of the same rectangle is $24 \mathrm{in}^{2}$, what are the dimensions?

We may have to draw ___ rectangles.	
Multiply/Add to the \qquad to get the big rectangle.	
Divide/Subtract to the ___ to get the small rectangle.	
Example A Each side of a square is increased 6 inches. When this happens, the area is multiplied by 16 . How many inches in the side of the original square?	Example B The length of a rectangle is 9 feet longer than it is wide. If each side is increased 9 feet, then the area is multiplied by 3 . What are the dimensions of the original rectangle?
Practice A	Practice B

MPC 099 Module D:
 Rational Equations

Rational Equations - Clear Denominator

Recall: $\quad \frac{3}{4} x-\frac{1}{2}=\frac{5}{6}$	
Clear fractions by multiplying ___ by ___	
Example A $\frac{5}{x}=\frac{3}{7 x}-4$	Example B $\frac{4}{x+5}+x=\frac{-2}{x+5}$
Practice A	Practice B

Rational Equations - Extraneous Solutions

Work Problems - One Unknown Time

Adam does a job in 4 hours. Each hour he does ____ of the job.	
Betty does a job in 12 hours. Each hour he does ___ of the job.	
Together, each hour they do \qquad of the job.	
This means it takes them, working together, \qquad hours to do the entire job.	
Work Equation: Use	__!
Example A Catherine can paint a house in 15 hours. Dan can paint it in 30 hours. How long will it take them working together?	Example B Even can clean a room in 3 hours. If his sister Faith helps, it takes them $2 \frac{2}{5}$ hours. How long will it take Faith working alone?
Practice A	Practice B

Revenue Table:	
To solve: Divide by	
Example A A group of college students bought a couch for \$80. However, five of them failed to pay their share so the others had to each pay $\$ 8$ more. How many students were in the original group?	A merchant bought several pieces of silk for $\$ 70$. He sold all but two of them at a profit of $\$ 4$ per piece. His total profit was $\$ 18$. How many pieces did he originally purchase?

| Practice A Practice B |
| :--- | :--- | :--- |

Distance Table:	
To solve: Divide by	
Example A man rode his bike to a park 60 miles away. On A me return trip he went 2 mph slower which made the trip take 1 hour longer. How fast did he ride to the park?	After driving through a construction zone for 45 miles, a woman realized that if she had driven just 6 mph faster she would have arrived 2 hours sooner. How fast did she drive?

| Practice A Practice B |
| :--- | :--- | :--- |

Downwind/stream: Upwind/stream: Example A Zoe rows a boat downstream for 80 miles. The return trip upstream took 12 hours longer. If the current flows at 3 mph, how fast does Zoe row in still water? Example B Darius flies a plane against a headwind for 5084 miles. The return trip with the wind took 20 hours less time. If the wind speed is 10 mph , how fast does Darius fly the plane when there is no wind? (practice problems on the next page)	

| Practice A Practice B |
| :--- | :--- |

To help visualize the frame Remember the frame is on the \qquad and \qquad , also the \qquad and \qquad	
Example A A picture measures 10 inches by 7 inches is placed in a frame of uniform width. If the area of the frame and picture together is 208 square inches, what is the width of the frame?	Example B An 8 inch by 12 inch drawing has a frame of uniform width around it. The area of the frame is equal to the area of the picture. What is the width of the frame?
Practice A	Practice B

Clearly identify the area of the \qquad and \qquad rectangles!

Be careful with \qquad is it talking about the \qquad or \qquad ?
Example A
A man mows his 40 ft by 50 ft rectangular lawn in a spiral pattern starting from the outside edge. By noon he is 90% done. How wide of a strip has he cut around the outside edge?

Example B
A farmer has a 50 ft by 25 ft rectangular field that he wants to increase by 68% by cultivating a strip of uniform width around the current field. How wide of a strip should he cultivate?

Practice B

MPC 099 Module E: Functions

Functions - Definition and Vertical Line Test

Functions - Function Notation

Functions - Evaluate at Expressions

Algebra of Functions - Add/Subtract/Multiply/Divide

Composition of Functions:$(f \circ g)(x)=f(g(x))$	
Example A $(g \circ f)(7)=$	Example B $(r \circ p)(x)=$
Practice A	Practice B

Inverse Functions - Showing Functions are Inverses

Inverse Functions - Graph the Inverse

Exponential Equations - Common Base

Exponential Functions - Binomial Exponents

| When multiplying exponents we may have to | |
| :--- | :--- | :--- |
| Example A | |
| $\qquad 8^{2 x-4}=16^{x+3}$ | |

Compound Interest:	
n compounds per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$	
$A=$	
$P=$	
$r=$	
$n=$	
$t=$	
Example A	Example B
Suppose you invest $\$ 13000$ in an account that pays 8% interest compounded monthly. How much would be in the account after 9 years?	You loan out \$800 to you friend at 3\% interest compounded quarterly. Your friend pays you back after five years. What does he owe you?
Practice A	Practice B

Evaluate__first	
Example A How much money would have to be invested at 6% interest compounded weekly to be worth $\$ 1500$ at the end of 15 years?What principle would amount to $\$ 800$ if invested for 10 years at 12% interest compounded semi- annually?	
Practice A	

Continuous Interest:	
$A=P e^{r t}$	
$P=$	
$e=$	
$r=$	
$t=$	
Example A	
An investment of \$25000 is at an interest rate of	What is the balance at the end of 10 years on an
11.5% compounded continuously. What is the balance after 20 years? 	investment of $\$ 13000$ at 4\% compounded continuously?

Compound Interest - Finding Principle with Continuous Interest

Evaluate___first	
Example A To pay an \$1100 vacation in 10 years, how much money should the Franklins invest at 9\% interest compounded continuously?	How much should you invest at 12% continuous interest for 100 years in order to have \$1,000,000?

Logarithm: $b^{x}=a$ can be written as \qquad	
Example A Write each as a logarithm: $m^{2}=25$ $5^{x}=125$	Example B Write each as an exponent: $\log _{x} 64=2$ $\log _{5} x=m$
Practice A	Practice B

To solve a logarithmic equation:	
Example A $\log _{x} 8=3$	

